
Chapter 6.  Power Flow Analysis 
 
 
6.1  Introduction 
 
The system is assumed 3-phase balanced operating in a steady state and stable condition.  
It is represented by a single phase diagram on a per-unit basis, with a system wide MVA 
base, and a voltage base properly chosen on each side of every transformer.  The base 
MVA and base V are specified/known everywhere in the system. 
 
The most common way to represent such a system is to use the node-voltage method.  
Given the voltages of generators at all generator nodes, and knowing all impedances of 
machines and loads, one can solve for all the currents in the typical node voltage analysis 
methods using Kirchoff's current law.  First the generators are replaced by equivalent 
current sources and the node equations are written in the form: 
 I YV=  
where I  is the injected current vector, Y  is the admittance matrix and V  is the node 
voltage vector.  These equations are easy to write by inspection of the circuit.   
 
The problem is not so simple in real power circuits and systems.  Usually in a power 
system the complex power may be known at load nodes, and sometimes on generator 
nodes only the real power and voltage are known.  Thus not enough variables are known 
to solve an equation of the form I YV= .  In fact, since the power is a nonlinear function 
of the current and voltage, the solution of the resulting equations (while it may exist) is 
not easy!  In fact there is no known analytical method to find the solution. As a result 
iterative techniques are used to find the solution (voltages, currents, etc.).  The nonlinear 
set of equations which are generated are called power flow equations.  The solution of 
such equations results in a power flow study or load flow analysis.  Such studies are the 
backbone of power system studies, for analysis, design, control, and economic operation 
of the power system.  They are also essential for transient analysis of the system. 
 
 
6.2  Bus Admittance Matrix 
 
1. The first step is to number all the nodes of the system from 0 to n .  Node 0 is the 

datum or reference node (or ground node). 
2. replace all generators by equivalent current sources in parallel with an admittance. 
3. Replace all lines, transformers, loads to equivalent admittances whenever possible.  

Knowing a load in MVA but not knowing the operating voltage, makes it impossible 
to change the load to an admittance.  The rule for this is simple: 1/y z=  where 

andy z  are generally complex numbers. 
4. The bus admittance matrix Y  is then formed by inspection as follows (this is similar 

to what we learned in circuit theory):  
 sum of admittances connected to node iiy i=  
and 
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 sum of admittances connected from node  to node ij jiy y i j= = −  
 
5. The current vector is next found from the sources connected to nodes 0 to n .  If no 

sourde is connected, the injected current would be 0. 
6. The equations which result are called the node-voltage equations and are given the 

"bus" subscript in power studies thus: 
 bus bus busI Y V=  

The inverse of these equations results in the set 1
bus bus busV Y I−= .  It is emphasized that the 

matrix 1
busY −  is not the same as the matrix Z  which results from solving a circuit using 

mesh equations.  To clearly show this difference we define 1
bus busZ Y −= .  It is noted that the 

matrix busY  is the same as the Y  matrix obtained from circuit theory.  Thus busY Y=  
however busZ Z≠ .  
 
It is also noted that in general, solving a large set of linear equations is never done using 
the matrix inverse.  Finding the inverse involves more work than is needed to find a 
solution and the resulting solutions are less accurate.  Usually Gauss elimination or a 
similar factorization scheme is used in a direct solution.  Iterative solutions are also very 
effective in larger systems.  
 
It is further noted that in a real power system with hundreds of nodes, each node is rarely 
connected to more than two or three other nodes, thus most of the elements of the 
admittance matrix are zero (the admittance matrix is sparse).  Special techniques exist to 
solve systems with sparse matrices. 
 
In a power system the busZ  is built up directly from the power system (see section 9.5) 
and matrix inversion is not used.  Also, we have a routine to form the admittance matrix 
called ybus used as follows:  Y = ybus(zdata) where "zdata" is a matrix of entries 
having n-rows and 4 columns.  Column 1 and 2 indicate the nodes between which the 
impedance exists (nonzero), and columns 3 and 4 give the real and imaginary parts of the 
impedance.  The result is the bus admittance matrix busY . 
 
Example 6.1.  The emfs shown in figure 6.1 page 190 are 1 1.1 0E = ∠ o  and 2 1.0 0E = ∠ o .  
Use the function  Y = ybus(zdata) to obtain the bus admittance matrix.  Find the 
bus impedance matrix by inversion and solve for the bus voltages. 
 
Tha Matlab program is shown below: 
 
%    From  To   R    X 
z = [ 0    1    0   1.0 
      0    2    0   0.8 
      1    2    0   0.4 
      1    3    0   0.2 
      2    3    0   0.2 



      3    4    0   0.08]; 
 [Ybus] = ybus(z)               % bus admittance matrix 
Ibus = [-j*1.1; -j*1.25; 0; 0]; % vector of injected bus 
currents 
Zbus = inv(Ybus)                % bus impedance matrix 
Vbus = Zbus*Ibus 
%Vbus = Ybus\Ibus 
 
Note: the last statement which is commented out is the better way of doing it!  Why? 
 
Do not execute chp6ex1 from this workbook.  Instead, go to the Matlab window and give 
the command to get the output. 
 
 
6.3  Solution of Nonlinear Algebraic Equations 
 
The most common methods for solving nonlinear algebraic equations are Gauss-Seidel, 
Newtow-Rahpson, and quasi-Newton-Raphson methods.  We start with one dimensional 
equations and then generalize to n-dimensional equations. 
 
 
6.3.1  Gauss-Seidel Method 
 
This method is also known as the method of successive displacements.  Consider the 
nonlinear equation ( ) 0f x = .  The equation is broken into two parts thus: ( )x g x= .  We 

assume ( )0x  is an initial "guess" of the solution, then "refine" the solution using: 
 ( ) ( )( )1 0x g x=  

 
This process is repeated thus 

 ( ) ( )( )2 1x g x=  

and on the thn  iteration we have: ( ) ( )( )1n nx g x −= .  If this process is convergent, then the 

successive solutions approach a value which is declared as the solution.  Thus if at some 

step 1k +  we have ( ) ( )1k kx x ε+ − ≤  where ε  is the desired "accuracy", then we claim the 

solution has been found to the accuracy specified. 
 
Example 6.2  Use the Gauss-Seidel method to obtain the roots of the equation 
 ( ) 3 26 9 4 0f x x x x= − + − =  
First the equation is expressed in a different form thus 

 ( ) ( )3 21
6 4

9
x x x g x= − − − =  

And the iteration can proceed.    Take a good look at the shape of the iterations!   Below 
is the program showing the process graphically (later showing how to do it iteratively). 



clear; x=0:.01:4.5; 
g=-1/9*x.^3+6/9*x.^2+4/9; 
k=1; 
dz=10; 
z=2; 
r(k)=z; 
s(k)=z; 
while dz >.001 
  k=k+2; 
  r(k-1)=z; 
  p=-1/9*z^3+6/9*z^2+4/9; 
  s(k-1)=p; 
  dz=abs(z-p); 
  z=p; 
  r(k)=z; s(k)=z; 
end 
plot(x,g,'-',x,x,'-', r,s,'-'),grid 
xlabel('x') 
text(0.8, 4.2,'g(x) =-1/9x^3+6/9x^2+4/9') 
text(3.2, 3.0,'x')   
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

g(x) =-1/9x3+6/9x2+4/9

x

   
 
Note: try running the program above with an initial "guess" of  z = 0 and  z = 0.8 
Does this process converge? always? to a unique solution? 
 
Next, plot the function and find the roots using Matlab:  
 
roots([1; -6; 9; -4]) 
x=0:0.01:4.5; 
zz=zeros(size(x));    % plot the x-axis 
f=x.^3-6*x.^2+9.*x-4; 
plot(x,f,x,zz),grid   
 



ans = 
   4.0000           
   1.0000 + 0.0000i 
   1.0000 - 0.0000i 
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Note the double root at  x = 1. 
 
Now the program to do this iteratively: 
 
dx=1;                   % Change in variable is set to a high value 
x=2;                                     % Initial estimate 
iter = 0;                                  % Iteration counter 
disp('Iter    g         dx        x')      % Heading for results 
while abs(dx) >= 0.001 & iter < 100        % Test for convergence 
  iter = iter + 1;                         % No. of iterations 
  g = -1/9*x^3+6/9*x^2+4/9 ; 
  dx = g-x;                                % Change in variable 
  x = x + dx;                              % Successive approximation 
  fprintf('%g', iter), disp([g, dx, x]) 
end   
 
Iter    g         dx        x 
1    2.2222    0.2222    2.2222 
2    2.5173    0.2951    2.5173 
3    2.8966    0.3793    2.8966 
4    3.3376    0.4410    3.3376 
5    3.7398    0.4022    3.7398 
6    3.9568    0.2170    3.9568 
7    3.9988    0.0420    3.9988 
8    4.0000    0.0012    4.0000 
9    4.0000    0.0000    4.0000   
 
 



Remarks: The roots found depend on the starting point!  There may be other roots… 
Moreover, there is no guarantee the method is converging unless one checks on the 
convergence by means of some algorithm. 
 
The Gauss-Seidel method can be expressed with a parameter α  known as an acceleration 
factor, thus:  

 ( ) ( ) ( )( ) ( )1k k k kx x g x xα+  = + −   

Note that if 1α =  the method becomes the non-accelerated method mentioned earlier. 
 
Example 6.3.  Find the roots of the equation used earlier but with an acceleration factor of 
1.25. 
 
First a graphical solution using Matlab: 
 
clear; x=0:.05:4.5; 
alpha=1.25; 
g=-1/9*x.^3+6/9*x.^2+4/9; 
k=1; 
dz=10; 
z=2; 
r(k)=z; 
s(k)=z; 
while dz >.001 
  k=k+2; 
  r(k-1)=z; 
  p=-1/9*z^3+6/9*z^2+4/9; 
  s(k-1)=p; 
  dz=abs(z-p); 
  z=z+alpha*(p-z); 
  r(k)=z; s(k)=p; 
end 
plot(x,g,'-',x,x,'-', r,s,'-'),grid 
xlabel('x') 
text(0.7, 4.1,'g(x) = -1/9x^3+6/9x^2+4/9') 
text(3.2, 3.0,'x')   
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Note how at each step we choose more than "x" trying to go "further" in the right 
direction.  This can also produce an unstable result, especially if 1α ? . 
 
Next the numerical solution using Matlab: 
 
%chp6fig4                  % Graphical display for Example 6.3 
clear; dx=1;               % Change in variable is set to a high value 
x=2;                                    % Initial estimate 
iter = 0; alpha=1.25;                   % Iteration counter, alpha 
disp('Iter    g         dx        x')   % Heading for results 
while abs(dx) >= 0.001 & iter < 100     % Test for convergence 
iter = iter + 1;                        % No. of iterations 
g = -1/9*x^3+6/9*x^2+4/9; 
dx = g-x;                               % Change in variable 
x = x +alpha*dx; % Successive approximation with alpha accel. factor 
fprintf('%g', iter), disp([g, dx, x]) 
end   
 
Iter    g         dx        x 
1    2.2222    0.2222    2.2778 
2    2.5902    0.3124    2.6683 
3    3.0801    0.4118    3.1831 
4    3.6157    0.4326    3.7238 
5    3.9515    0.2277    4.0084 
6    4.0000   -0.0085    3.9978 
7    4.0000    0.0022    4.0005 
8    4.0000   -0.0005    3.9999   
 
Next the process is generalized for n  equations in n  variables: 
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Solving for one variable from each equation, the system of equations car be represented 
as follows: 
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First a starting solution is assumed to be ( ) ( ) ( )( )0 0 0
1 2, , , nx x xL .  Now there are two ways to 

proceed: 
 

1. Gauss iteration: use the starting estimate ( ) ( ) ( )( )0 0 0
1 2, , , nx x xL  in the equations to 

compute a first iterate ( ) ( ) ( )( )1 1 1
1 2, , , nx x xL  then repeat the process using the first iterate 

to get a second iterate ( ) ( ) ( )( )2 2 2
1 2, , , nx x xL .  This is repeated till the solutions converge. 

 

2. Gauss-Seidel iteration: use the starting estimate ( ) ( ) ( )( )0 0 0
1 2, , , nx x xL  in the first equation 

ONLY to get a new estimate for ( )1
1x .  Now use ( ) ( ) ( )( )1 0 0

1 2, , , nx x xL  in the second 

equation to get an estimate for ( )1
2x .  Now use ( ) ( ) ( )( )1 1 0

1 2, , , nx x xL  in the third equation 

to get an estimate for ( )1
3x  and so on till the whole set ( ) ( ) ( )( )1 1 1

1 2, , , nx x xL  is found.  The 

process is repeated till the solutions converge. 
 
An acceleration factor α  can be used as before, thus at each step upgrade the estimate as 
follows 

 ( ) ( ) ( ) ( )( )1 1k k k k
i i ical ix x x xα+ += + −  

Clearly if 1α =  then the iteration is the same as before.  Usually 1α ≥  but not much 
larger than unity. 


